1.4 Relations and Functions
A relation is a correspondence between two sets. If x and y are two elements in these sets and if a relation exists between x and y, then x corresponds to y, or y depends on x.

DEFINITION OF A FUNCTION:
Let X and Y two nonempty sets. A function from X into Y is a relation that associates with each element of X, exactly one element of Y. However, an element of Y may have more than one elements of X associated with it.
That is for each ordered pair (x,y), there is exactly one y value for each x, but there may be multiple x values for each y. The variable x is called the independent variable (also sometimes called the argument of the function), and the variable y is called dependent variable (also sometimes called the image of the function.)

Below is the graph of y=x^2-4 (an upward parabola with vertex (0,-4))

For y=12, there are two possible x’s. x=-4, and x=4.

VERTICAL-LINE TEST THEOREM
A set of points in the xy-plane is the graph of a function if and only if (iff), every vertical line intersects the graph in at most one point.
\(x = y^2 \) is not a function from \(X \) into \(Y \), because there is not exactly one \(y \) value for each \(x \). Solving for \(y \), you get \(y = \pm \sqrt{x} \)

which means there are two possible values for \(y \).

This figure is a parabola with vertex at origin, and which axis of symmetry is with the x-axis, and opens to the right.

Does this graph pass the vertical lines test?

Can you think of any other equations that are NOT functions of \(x \)?

A circle?
DOMAIN AND RANGE
The set X is called the **domain** of the function. This is the set of all possible x values specified for a given function.

The set of all y values corresponding to X is called the **range**.

In the example below, we see that x goes off into infinity in both directions, so the domain of $y=x^2$ is

{all real numbers}

However, we see there are no corresponding values of y that are less than -4, so the range is \{y | y≥-4\}

Example 4 p. 36
Consider the equation

$y = 2x - 5$, where the domain is \{x|1 ≤ x ≤ 6\}

Is this equation a function?
Notice that for any x, you can only get one answer for y.
(E.g. for $x = 1$, $y = 2(1) - 5 = -3$.) Therefore the equation is a function.

What is the range?
Since this is a straight line, we need only check y values at endpoints of domain. The y values are also called function values, so they are often referred to as $f(x)$, which means the value of the function at x (not f times x).

The endpoints of the domain are 1 and 6.

$f(1) = 2(1) - 5 = -3$
$f(6) = 2(6) - 5 = 7$

So the range is \{y|-3 ≤ y ≤ 7\}
A function, \(f \), is like a machine that receives as input a number, \(x \), from the domain, manipulates it, and outputs the value, \(y \). The function is simply the process that \(x \) goes through to become \(y \). This “machine” has 2 restrictions:
1. It only accepts numbers from the domain of the function.
2. For each input, there is exactly one output (which may be repeated for different inputs).

Finding Values of a Function
Example 5 p. 38
For the function \(f \) defined by \(f(x) = 2x^2 - 3x \), evaluate

b) \(f(x) + f(3) = \left[2x^2 - 3x \right] + \left[2(3)^2 - 3(3) \right] \\
 = 2x^2 - 3x + 18 - 9 \\
 = 2x^2 - 3x + 9 \)

e) \(f(x+3) = 2(x+3)^2 - 3(x+3) \\
 = 2(x^2 + 6x + 9) - 3x - 9 \\
 = 2x^2 + 12x + 18 - 3x - 9 \\
 = 2x^2 + 9x + 9 \)

Notice that \(f(x) + f(3) \) does not equal \(f(x+3) \)
Difference Quotient of f

$$\frac{f(x+h) - f(x)}{h} =$$

$$= \frac{[2(x+h)^2 - 3(x+h)] - [2x^2 - 3x]}{h}$$

$$= \frac{[2(x^2 + 2hx + h^2) - 3x - 3h] - [2x^2 - 3x]}{h}$$

$$= \frac{2x^2 + 4hx + 2h^2 - 3x - 3h - 2x^2 + 3x}{h}$$

$$= \frac{4hx + 2h^2 - 3h}{h}$$

$$= \frac{h(4x + 2h - 3)}{h}$$

$$= 4x + 2h - 3$$

This is called the *difference quotient of f*, which is an important function in calculus. In calculus, the derivative, dy/dx, is defined as the limit of this function as h approaches 0.

IMPORTANT FACTS ABOUT FUNCTIONS

1. For each x in the domain of a function f, there is one and only one image $f(x)$ in the range.

2. f is the symbol that we use to denote the function. It is symbolic of the equation that we use to get from an x in the domain to the $f(x)$ in the range.

3. If $y = f(x)$, then x is called the **independent variable** or argument of f, and y is called the **dependent variable** or the value of f at x (or the image of f at x).
Example 8 p. 40
Find the domain of each of the following functions:

b) \(g(x) = \frac{3x}{x^2 - 4} \)
c) \(h(t) = \sqrt{4 - 3t} \)

The domain is the set of all possible \(x \) values that can be used in these functions.

b) \(g(x) \) is the division of \(3x \) by \(x^2 - 4 \). This is undefined if the denominator is 0, so we have the limitation that \(x^2 - 4 \neq 0 \).

Solve for \(x \) to find specifications for what \(x \) cannot be.
\[x^2 \neq 4 \]
\[x \neq \pm 2 \]

Therefore domain is \(\{x | x \neq \pm 2\} \) The function \(g(x) \) is not defined at \(x=2 \) or \(x=-2 \).

c) \(h(t) \) is the square root of \(4 - 3t \). Only nonnegative numbers have real square roots, so the expression on the radical must be \(\geq 0 \).
\[4 - 3t \geq 0 \]
\[-3t \geq -4 \]
Remember when you multiply an inequality by a negative number, the inequality reverses.
\[-3t/(-3) \leq -4/(-3) \]
\[t \leq -4/3 \]

Therefore domain is \(\{t | t \leq -4/3\} \)

Another way to state this is in interval form: \(\left(-\infty, -\frac{4}{3} \right] \)

This is not a coordinate point. It’s just another way to describe a set of numbers.

NOW YOU DO #37 on p.46
Look at the graph to the right (\(y=1/x \)):

Is this graph a function?
Yes, because a vertical line through any \(x \)-value on the graph only intersects the graph once.

What are the domain and range?
The domain (possible \(x \) values) is \(\{x | x \neq 0\} \)
The range (possible \(y \) values) is \(\{y | y \neq 0\} \)
Problem 48 on p. 47

a) Find $f(0)$ and $f(6)$
What is y when x is 0 and x is 6? From the data given, we see the y-coordinate at $x=0$ is 0, so $f(0)=0$. The y-coordinate at $x=6$ is also 0, so $f(6)=0$.

b) Find $f(2)$ and $f(-2)$
What is y when x is 2 and x is -2? From the data given, we see the y-coordinate at $x=2$ is -2, so $f(2)=-2$. The y-coordinate at $x=-2$ is 1, so $f(-2)=1$.

c) Is $f(3)$ positive or negative? We see that at $x=3$ the graph is below the x-axis (where $y < 0$) so $f(3)$ is negative.

d) Is $f(-1)$ positive or negative? We see that at $x=3$ the graph is below the x-axis (where $y < 0$) so $f(3)$ is negative.

e) For what numbers x is $f(x) = 0$? In other words, at which values of x cross the x-axis (where $y=0$)? The graph crosses the x-axis at $x=0, x=4, x=6$.

f) For what numbers x is $f(x) < 0$? In other words, at which values of x is the graph below the x-axis? Remember, the coordinates where $y=0$ are not included. The graph is < 0 only for $0 < x < 4$. In interval form this is $(0,4)$.

g) What is the domain of f? Domain is the possible x values. Remember that this graph does not continue into infinity on both sides. It is only define for the graph drawn. Therefore, can infer that the possible x values are $-4 \leq x \leq 6$, or $[-4,6]$

h) What is the range of f? The y values range from as low as -2 to as high as 3, so range is $\{y\mid -2 \leq y \leq 3\}$.

i) What are the x-intercepts? The x-intercepts are found when $y=0$, which are the points $\{(0,0), (4,0),(6,0)\}$.

j) What is the y-intercept? By definition, this would not be a function if it crossed the y-axis (or any other vertical line) more than once. The only point that does this is $(0,0)$.

k) How often does the line $y=-1$ intersect the graph? If we draw a horizontal line through $y=-1$, we’d see it intersects twice.

l) How often does the line $x=1$ intersect the graph? Three times.

m) For what value of x does $f(x) = 3$? Remember $f(x)$ is the same as y. What is x when $y=5$? There’s only one point on the graph that gives a y-value of 3. That is when $x=5$.

n) For what value of x does $f(x)=-2$? There’s only one point on the graph that gives a y-value of -2. That is when $x=2$.
Example 11 on p. 44

\[f(x) = \frac{x}{x + 2} \]

a) Is the point \((1, \frac{1}{2})\) on the graph of \(f\)? Substitute 1 for \(x\) and \(\frac{1}{2}\) for \(f(x)\) and see if the statement is true.
Does \(\frac{1}{2} = \frac{1}{1+2}\) ? \(\frac{1}{2} \neq \frac{1}{3}\) Therefore \((1, \frac{1}{2})\) is not on the graph.

b) If \(x = -1\), what is \(f(x)\)? \(f(-1) = -1/(-1+2) = -1/1 = -1\)
The point at \(x = -1\) is \((-1,-1)\).

c) If \(f(x) = 2\), what is \(x\)? YOU DO THIS?

Example 12 on p.45 Area of a Circle

\[A(r) = \pi r^2 \]

where \(r\) represents the radius of the circle. The domain is \(\{r | r > 0\}\). Why?

NOW YOU DO #87 on p.50

HOMEWORK

p. 46 #9, 17, 25, 29, 39, 45, 47, 65, 73, 85