What about the volume of an oblique prism or cylinder? You can approximate the shape of this oblique rectangular prism with a staggered stack of three reams of 8.5-by-11-inch paper. If you nudge the individual pieces of paper into a slanted stack, then your approximation can be even better.

Rearranging the paper into a right rectangular prism changes the shape, but certainly the volume of paper hasn’t changed. The area of the base, 8.5 by 11 inches, didn’t change and the height, 6 inches, didn’t change, either.

In the same way, you can use crackers, CDs, or coins to show that an oblique cylinder has the same volume as a right cylinder with the same base and height.

Step 4
Use the stacking model to extend the last conjecture to oblique prisms and cylinders. Complete the conjecture.

Oblique Prism-Cylinder Volume Conjecture

The volume of an oblique prism (or cylinder) is the same as the volume of a right prism (or cylinder) that has the same \(\text{base} \) and the same \(\text{height} \).

Finally, you can combine the last three conjectures into one conjecture for finding the volume of any prism or cylinder, whether it’s right or oblique.

Step 5
Copy and complete the conjecture.

Prism-Cylinder Volume Conjecture

The volume of a prism or a cylinder is the \(\text{base area} \) multiplied by the \(\text{height} \).