EXPERIMENT 9

Solutions Part 1

PURPOSE: The purpose of this experiment is to determine what type of substances will dissolve in other types of substances and to determine the properties of solutions.

Introduction:
Much of chemistry occurs in solutions. For example, many of the chemical reactions that occur in the body, occur in the blood or in cells. These all contain solutions. Solutions are homogeneous mixtures. They are made of a solvent, the material that does the dissolving, and a solute, the material that gets dissolved. Not all solutes are soluble, able to dissolve, in any solvent. How soluble a substance is depends on several factors that you will be determining today. One factor has to do with the structure and nature of the solute and solvent. Certain substances are considered polar if they have a difference in charge from one end of the molecule to the other. Polar substances tend to dissolve in only polar solvents and nonpolar substances tend to dissolve much better in nonpolar solvents. In today's lab you will be determining the factors that influence solubility.

A. Solutions of liquids in water

Take 2 test tubes with approximately 2 ml of de-ionized water to the hood.
To one of the test tubes add about 2ml of ethyl alcohol and stir with your stirring rod.
To the other test tube of water add about 2ml of cyclohexane and stir. Don't forget to clean your stirring rod.

<table>
<thead>
<tr>
<th></th>
<th>Soluble in water?</th>
<th>polar or nonpolar</th>
<th>ionic or molecular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcohol (C₂H₅OH)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclohexane (C₆H₁₂)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Disposal: Empty both test tubes into the red organic waste container.

Food coloring in hot and cold water

To about 250 mL of hot tap water in a beaker add 1 drop of food coloring. Then add 1 drop of food coloring to about 250 mL of cold tap water in another beaker.

Observations:
Give a brief explanation of the difference in the way food coloring dispersed in hot water versus cold water.
B. Solutions of gases in water
Set up a water bath. Take a test tube to the reagent bench and obtain about 3 ml of the soda beverage. Place the test tube in the water bath.

Observations:__

Soda is dissolved carbon dioxide CO₂ in water (with sugar and other flavorings)

Is the carbon dioxide more soluble in hot water or in cold water?______________

Explain___

C. Solutions of solids in water
Take 6 test tubes with about 3 ml of de-ionized water to the reagent bench. With a pencil label the test tubes with the formulas of the following compounds. Add a small amount (about the size of a pea) of the compounds to the appropriate test tube. Stir.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Formula of compound</th>
<th>Ionic or Molecular solid?</th>
<th>Soluble or insoluble?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper (II) sulfate in water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper (II) carbonate in water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Place in waste container labeled “Copper (II) carbonate”</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium carbonate in water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Place in waste container labeled “Calcium Carbonate”</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium chloride in water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium nitrate in water</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Are all ionic compounds soluble in water?____________________
Demonstration: sugar in hot water and in cold water
Your instructor will put 50 g of sugar (sucrose, C\textsubscript{12}H\textsubscript{22}O\textsubscript{11}) in 100 ml of cold water in one beaker and stir and 100 g of sucrose in 100 g of hot water (just below boiling) and stir.
Observations: ___

Explain the difference between the hot solution and the cold solution.

How does temperature affect the solubility of a solid in water?

Demonstration: Iodine in water and in cyclohexane (C\textsubscript{6}H\textsubscript{12}) versus NaCl in water and in cyclohexane

Your instructor will pour about 3 ml of cyclohexane into two test tubes in the hood and de-ionized water into the other two test tubes. Your instructor will then place about a pea sized amount of NaCl into each of the solvents and the same amount of iodine crystals in the remaining test tubes.

<table>
<thead>
<tr>
<th>Solute</th>
<th>Solvent</th>
<th>Soluble or insoluble</th>
<th>Ionic, polar or nonpolar solute</th>
<th>Polar or nonpolar solvent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium Chloride (NaCl)</td>
<td>Water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium Chloride</td>
<td>Cyclohexane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iodine (I\textsubscript{2})</td>
<td>Water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iodine</td>
<td>Cyclohexane</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Instructors: Dispose of the test tubes with iodine and/or cyclohexane in the waste container labeled “Halogenated Hydrocarbons”

What conclusion can you make from the above table about the type of solute that best dissolves in a certain type of solvent?

Demonstration: super saturation
Your instructor will show you saturated, unsaturated and supersaturated solutions of sodium acetate

Look at each solution and record your observations below?

<table>
<thead>
<tr>
<th>solution</th>
<th>Initial observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>saturated</td>
<td></td>
</tr>
<tr>
<td>unsaturated</td>
<td></td>
</tr>
<tr>
<td>supersaturated</td>
<td></td>
</tr>
</tbody>
</table>

Your instructor will now add a small crystal of sodium acetate to each of the solutions. Record what happens

<table>
<thead>
<tr>
<th>solution</th>
<th>Final observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>saturated</td>
<td></td>
</tr>
<tr>
<td>unsaturated</td>
<td></td>
</tr>
<tr>
<td>supersaturated</td>
<td></td>
</tr>
</tbody>
</table>

Demonstration: Heat of Solution
Your instructor will put approximately 25 ml of de-ionized water into 2 different Erlenmeyer flasks. The initial temperature is to be recorded before a substance is added. In one flask about 5 g of ammonium nitrate will be added. To the other flask about 5 g of sodium hydroxide will be added. Record the initial and final temperatures in the table below.

<table>
<thead>
<tr>
<th>substance name</th>
<th>Formula</th>
<th>initial temperature</th>
<th>final temperature</th>
<th>endothermic or exothermic</th>
</tr>
</thead>
<tbody>
<tr>
<td>sodium hydroxide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ammonium nitrate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Which ionic substances dissolve in water? (There were a total of 9 ionic compounds in this experiment.)
Which ionic substances do not dissolve in water?

Which molecular substances dissolve in water? (There were a total of 5 molecular compounds in this experiment.)

Why?

Which molecular substances do not dissolve in water?

Why?

How can many solids be made more soluble in water?

How can gases be made more soluble in water?

What are the factors that influence how a substance dissolves in water?

What was the most important concept you learned today about solutions?
Problems (To be completed before you leave the lab)

1. What is the percent m/m concentration of an aqueous solution of sodium nitrate in which there are 24.34 grams of solute in 138.87 grams of solvent?

 Answer____________________

2. How many grams of copper (II) sulfate are dissolved in 247 ml of solution if the concentration is 48.6% CuSO₄ (m/v)?

 Answer____________________

3. How many ml of alcohol are needed to make 4.50 L of a 25.0 % aqueous solution? (Assume the volumes are additive.)

 Answer____________________

4. If vinegar is a 5.0% (m/v) solution of acetic acid in water, how many grams of acetic acid are dissolved in a 1.0L bottle of vinegar?

 Answer____________________
EXPERIMENT 9
SOLUTIONS PART 1

Solutions of liquids in water

<table>
<thead>
<tr>
<th>polar or nonpolar</th>
<th>ionic or molecular</th>
<th>Soluble in water?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td></td>
<td>________________</td>
</tr>
<tr>
<td>Alcohol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclohexane</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solutions of gases in water
Is the carbon dioxide more soluble in hot water or in cold water? ________________

Explain___

Solutions of solids in water

<table>
<thead>
<tr>
<th>Substance</th>
<th>Formula of compound</th>
<th>Ionic or Molecular solid?</th>
<th>Soluble or insoluble?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper (II) sulfate in water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper (II) carbonate in water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium carbonate in water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium chloride in water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium nitrate in water</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Are all ionic compounds soluble in water? ________________

Factors that affect solubility
Food coloring in hot and cold water

Explain the difference between dispersion of food coloring in the beaker of hot water and the beaker of cold water.

Sugar in hot water and in cold water

How does temperature affect the solubility of a solid in water?

Iodine in water and in cyclohexane NaCl in water and in cyclohexane

<table>
<thead>
<tr>
<th>Solute</th>
<th>Solvent</th>
<th>Soluble or insoluble</th>
<th>Ionic, polar or nonpolar solute</th>
<th>Polar or nonpolar solvent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium Chloride</td>
<td>Water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium Chloride</td>
<td>Cyclohexane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iodine</td>
<td>Water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iodine</td>
<td>Cyclohexane</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What conclusion can you make from the above table about the type of solute that best dissolves in a certain type of solvent?

Which ionic substances dissolve in water?

Which ionic substances do not dissolve in water?
Which molecular substances dissolve in water?

Why?

Which molecular substances do not dissolve in water?

Why?

How can many solids be made more soluble in water?

How can gases be made more soluble in water?

What are the factors that influence how a substance dissolves in water?
Problems (Show all work)

1. What is the percent concentration \((m/m)\) of a sodium fluoride solution made by dissolving 65.4 grams of sodium fluoride in 125.1 grams of water?

 Answer____________________

2. Saline solution is often used in hospitals and by optometrists. It is a 0.92\% \((m/v)\) aqueous solution of sodium chloride. How many grams of NaCl would be found in 1.59 liters of saline solution

 Answer____________________