Intercepts

The \(x \)-intercept of a graph is the \(x \)-coordinate of the point where the graph crosses the \(x \)-axis. The \(y \)-intercept of the graph is the \(y \)-coordinate of the point where the graph crosses the \(y \)-axis. Look at the graph to the right.

The line crosses the \(x \)-axis at the point \((4, 0)\). Thus, the \(x \)-intercept is 4. The line crosses the \(y \)-axis at the point \((0, -2)\). Thus, the \(y \)-intercept is -2.

Note: The coordinate of an intercept is always going to be zero.

Another way to graph linear equations is to use the \(x \)- and \(y \)-intercepts.

Graph \(y = 2x - 6 \) using the \(x \)- and \(y \)-intercepts.

To find \(x \)-intercept, let \(y = 0 \). To find the \(y \)-intercept, let \(x = 0 \).

\[
egin{align*}
0 &= 2x - 6 \\
6 &= 2x \\
3 &= x \text{ (} x \text{-intercept is 3)}
\end{align*}
\]

\[
egin{align*}
y &= 2(0) - 6 \\
y &= 0 - 6 \\
y &= y \text{ (} y \text{-intercept is -6)}
\end{align*}
\]

Thus, the ordered pair is \((3, 0)\). Thus, the ordered pair is \((0, -6)\).

Now, simply graph the intercepts and draw a line that connects them.

1. State the steps to graph a line whose \(y \)-intercept is 2 and \(x \)-intercept is 4.

2. State the steps to find the \(x \)- and \(y \)-intercept in the equation \(y = 2x - 2 \). Solve for the \(x \)- and \(y \)-intercept.

State the \(x \)- and \(y \)-intercept for each line.

3. \(a \)

4. \(b \)

5. \(c \)

State the \(x \)- and \(y \)-intercept for each line.

6. \(-y = x + 4\)

7. \(y = 2x - 6\)

8. \(y = \frac{1}{4}x + 1\)

9. \(y = x - 6\)

10. \(y = -4x + 8\)

11. \(y = \frac{1}{4}x - 2\)