3.3 -3.4 More Triangle Parts and Properties

Base and altitude

Every triangle has three bases (any of its sides) and three altitudes (heights). Every altitude is the perpendicular segment from a vertex to its opposite side (or the extension of the opposite side) (Figure 1).

![Figure 1](image1.png)

Altitudes can sometimes coincide with a side of the triangle or can sometimes meet an extended base outside the triangle. In Figure 2, AC is an altitude to base BC, and BC is an altitude to base AC.

![Figure 2](image2.png)

In a right triangle, each leg can serve as an altitude.

Figure 2 In a right triangle, each leg can serve as an altitude.

It is interesting to note that in any triangle, the three lines containing the altitudes meet in one point (Figure 4).
3.3 - 3.4 More Triangle Parts and Properties

Figure 4 The three lines containing the altitudes intersect in a single point, which may or may not be inside the triangle. This point is called the orthocenter.

Median

A **median** in a triangle is the line segment drawn from a vertex to the midpoint of its opposite side. Every triangle has three medians. In Figure 5, \(E\) is the midpoint of \(BC\). Therefore, \(BE = EC\). \(AE\) is a median of \(\Delta ABC\).

Figure 5 A median of a triangle.

In every triangle, the three medians meet in one point inside the triangle (Figure 6).

Figure 6 The three medians meet in a single point inside the triangle. This point is called the Centroid.

Angle bisector

An **angle bisector** in a triangle is a segment drawn from a vertex that bisects (cuts in half) that vertex angle. Every triangle has three angle bisectors. In Figure , is an angle bisector in \(\Delta ABC\).
3.3 - 3.4 More Triangle Parts and Properties

Figure 7 An angle bisector.

In every triangle, the three angle bisectors meet in one point inside the triangle (Figure 8).

Figure 8 The three angle bisectors meet in a single point inside the triangle. This point is called the Incenter.

Perpendicular bisector

A *perpendicular bisector* in a triangle is a segment drawn from a midpoint of a side that is perpendicular to that side. The perpendicular bisectors of a triangle meet at a single point, called the Circumcenter.
3.3 - 3.4 More Triangle Parts and Properties

In general, altitudes, medians, perpendicular bisectors and angle bisectors are different segments (or lines, as in perp. bisectors). In certain triangles, though, they can be the same segments. In Figure 9, the altitude drawn from the vertex angle of an isosceles triangle can be proven to be a median as well as an angle bisector and a perpendicular bisector.

![Figure 9](image)

Figure 9 The altitude drawn from the vertex angle of an isosceles triangle.

Example 1: Based on the markings in Figure 10, name:

an altitude of Δ QRS ____________________________

a median of Δ QRS ____________________________

an angle bisector of Δ QRS __________________________

![Figure 10](image)

Figure 10 Finding an altitude, a median, and an angle bisector.
3.3 - 3.4 More Triangle Parts and Properties

Special Features of Isosceles Triangles

Isosceles triangles are special and because of that there are unique relationships that involve their internal line segments. Consider isosceles triangle ABC in Figure 1.

![Isosceles Triangle with Median](Image)

Figure 1 An isosceles triangle with a median.

With a median drawn from the vertex to the base, BC, it can be proven that $\Delta BAX \cong \Delta CAX$, which leads to several important theorems.

<table>
<thead>
<tr>
<th>Theorem</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>If two sides of a triangle are equal, then the angles opposite those sides are also equal.</td>
<td>$\triangle BAX \cong \triangle CAX$</td>
</tr>
<tr>
<td>If a triangle is equilateral, then it is also equiangular.</td>
<td></td>
</tr>
<tr>
<td>If two angles of a triangle are equal, then the sides opposite these angles are also equal.</td>
<td></td>
</tr>
<tr>
<td>If a triangle is equiangular, then it is also equilateral.</td>
<td></td>
</tr>
</tbody>
</table>
3.3 - 3.4 More Triangle Parts and Properties

Example 1: Figure has ΔQRS with QR = QS. If \(m \angle Q = 50^\circ \), find \(m \angle R \) and \(m \angle S \).

![Triangle QRS](image)

Figure 2 An isosceles triangle with a specified vertex angle.

Because \(m \angle Q + m \angle R + m \angle S = 180^\circ \), and because \(QR = QS \) implies that \(m \angle R = m \angle S \),

\[
m \angle Q + m \angle R + m \angle R = 180^\circ
\]

\[
50^\circ + 2m \angle R = 180^\circ
\]

\[
2m \angle R = 130^\circ
\]

\[
m \angle R = 65^\circ \text{ and } m \angle S = 65^\circ
\]

Example 2: Figure 3 has ΔABC with \(m \angle A = m \angle B = m \angle C \), and \(AB = 6 \). Find BC and AC.

![Triangle ABC](image)

Figure 3 An equiangular triangle with a specified side.

Because the triangle is equiangular, it is also equilateral. Therefore, \(BC = AC = 6 \).